DIFERENTES ÓRDENES DE INDEFINIDAD
Las dificultades lógicas e incluso las contradicciones con las que chocan los matemáticos, cuando consideran cantidades «infinitamente grandes» o «infinitamente pequeñas» diferentes entre sí y pertenecientes incluso a órdenes diferentes, vienen únicamente de que consideran como infinito lo que es simplemente indefinido; es cierto que, en general, parecen preocuparse bastante poco de estas dificultades, que por ello no existen menos y no son menos graves, y que muestran su ciencia plagada de un montón de ilogismos, o, si se prefiere, de «paralogismos», que la hacen perder todo valor y todo alcance serio a los ojos de aquellos que no se dejan ilusionar por las palabras. He aquí algunos ejemplos de las contradicciones que introducen así los que admiten la existencia de magnitudes infinitas, cuando se trata de aplicar esta noción a las magnitudes geométricas: si se considera una línea, una recta por ejemplo, como infinita, este infinito debe ser más pequeño, e incluso infinitamente menor, que el que es constituido por una superficie, tal como un plano, en el que esta línea está contenida con una infinitud de otras, y este segundo infinito, a su vez, será infinitamente más pequeño que el de la extensión de tres dimensiones. La posibilidad misma de la coexistencia de todos estos pretendidos infinitos, de los cuales algunos lo son al mismo grado y los otros a grados diferentes, debería bastar para probar que ninguno de ellos puede ser verdaderamente infinito, incluso a falta de toda consideración de un orden más propiamente metafísico; en efecto, repitámoslo todavía, ya que en eso se trata de verdades sobre las cuales nunca se podría insistir demasiado, es evidente que, si se prefiere una pluralidad de infinitos distintos, cada uno de ellos se encuentra limitado por los otros, lo que equivale a decir que se excluyen los unos a los otros. A decir verdad, los «infinitistas», en quienes esta acumulación puramente verbal de una «infinitud de infinitos» parece producir como una suerte de «intoxicación mental», si es permisible expresarse así, no retroceden en modo alguno ante semejantes contradicciones, puesto que, como ya lo hemos dicho, no sienten ninguna dificultad en admitir que hay diferentes números infinitos, y que, por consecuencia, un infinito puede ser más grande o más pequeño que otro infinito; pero la absurdidad de tales enunciados es muy evidente, y el hecho de que son de un uso bastante corriente en las matemáticas actuales no cambia en nada el tema, sino que muestra solamente hasta qué punto se ha perdido el sentido de la lógica más elemental en nuestra época. Otra contradicción todavía, no menos manifiesta que las precedentes, es la que se presenta en el caso de una superficie cerrada, y por consiguiente, evidente y visiblemente finita, y que debería contener no obstante una infinitud de líneas, como, por ejemplo, una esfera que contiene una infinitud de círculos; se tendría aquí un continente finito, cuyo contenido sería infinito, lo que tiene lugar igualmente, por lo demás, cuando se sostiene, como lo hace Leibnitz, la «infinitud efectiva» de los elementos de un conjunto continuo. Por el contrario, no hay ninguna contradicción en admitir la coexistencia de indefinidades múltiples y de diferentes órdenes: es así como la línea, indefinida según una sola dimensión, puede ser considerada a este respecto como constituyendo una indefinidad simple o del primer orden; la superficie, indefinida según dos dimensiones, y que comprende una indefinidad de líneas indefinidas, será entonces una indefinidad del segundo orden, y la extensión de tres dimensiones, que puede comprender una indefinidad de superficies indefinidas, será del mismo modo una indefinidad del tercer orden. Aquí es esencial destacar también que decimos que la superficie comprende una indefinidad de líneas, pero no que esté constituida por una indefinidad de líneas, del mismo modo que la línea no está compuesta de puntos, sino que comprende una multitud indefinida de ellos; y ocurre lo mismo también con el volumen en relación a las superficies, puesto que la extensión de las tres dimensiones misma no es otra cosa que un volumen indefinido. Por lo demás, en el fondo, eso es lo que hemos dicho más atrás al respecto de los «indivisibles» y de la composición del «continuo»; las cuestiones de este género, en razón de su complejidad misma, son de aquellas que hacen sentir mejor la necesidad de un lenguaje riguroso. Agregamos también a este propósito que, si desde un cierto punto de vista, se puede considerar legítimamente la línea como engendrada por un punto, la superficie por una línea y el volumen por una superficie, eso supone esencialmente que ese punto, esa línea o esa superficie se desplazan por un movimiento continuo, que comprende una indefinidad de posiciones sucesivas; y eso es muy distinto que considerar esas posiciones tomadas aisladamente las unas de las otras, es decir, los puntos, las líneas y las superficies consideradas como fijos y determinados, como constituyendo respectivamente partes o elementos de la línea, de la superficie y del volumen. Del mismo modo, cuando se considera, en sentido inverso, una superficie como la intersección de dos volúmenes, una línea como la intersección de dos superficies y un punto como la intersección de dos líneas, entiéndase que estas intersecciones no deben concebirse de ninguna manera como partes comunes a esos volúmenes, a esas superficies o a esas líneas; son sólo, como lo decía Leibnitz, límites o extremidades. Según lo que hemos dicho hace un momento, cada dimensión introduce en cierto modo un nuevo grado de indeterminación en la extensión, es decir, en el continuo espacial considerado como susceptible de crecer indefinidamente en extensión, y se obtiene así lo que se podrían llamar potencias sucesivas de lo indefinido (Cf El Simbolismo de la Cruz, cap XII ); y se puede decir también que una indefinidad de un cierto orden o de una cierta potencia contiene una multitud de indefinidos de un orden inferior o de una potencia menor. Mientras en todo esto no se trate más que de indefinido, todas estas consideraciones y las del mismo género permanecen pues perfectamente aceptables, ya que no hay ninguna incompatibilidad lógica entre indefinidades múltiples y distintas, que, aunque son indefinidas, por eso no son menos de naturaleza esencialmente finita, y por consiguiente perfectamente susceptibles de coexistir, como otras tantas posibilidades particulares y determinadas, en el interior de la Posibilidad total, que es la única que es infinita porque es idéntica al Todo universal (Cf Los Estados múltiples del ser, cap I ). Estas mismas consideraciones no toman una forma imposible y absurda más que por la confusión de lo indefinido con el infinito; así, aquí tenemos también uno de esos casos donde, como ocurría cuando se trataba de la «multitud infinita», la contradicción inherente a un pretendido infinito determinado oculta, deformándola hasta hacerla casi irreconocible, otra idea que en sí misma no tiene nada de contradictorio. Acabamos de hablar de diferentes grados de indeterminación de las cantidades en el sentido creciente; es por esta misma noción, considerada en el sentido decreciente, por la que hemos justificado más atrás la consideración de los diversos órdenes de cantidades infinitesimales, cuya posibilidad se comprende así, más fácilmente todavía, al observar la correlación que hemos señalado entre lo indefinidamente creciente y lo indefinidamente decreciente. Entre las cantidades indefinidas de diferentes órdenes, las de un orden diferente del primero son siempre indefinidas tanto en relación a las de los órdenes precedentes como en relación a las cantidades ordinarias; es completamente legítimo también considerar del mismo modo, en sentido inverso, cantidades infinitesimales de diferentes órdenes, donde las de cada orden son infinitesimales, no sólo en relación a las cantidades ordinarias, sino también en relación a las cantidades infinitesimales de los órdenes precedentes (Reservamos, como se hace por lo demás muy habitualmente, la denominación de «infinitesimales» a las cantidades indefinidamente decrecientes, con la exclusión de las cantidades indefinidamente crecientes, que, para abreviar, podemos llamar simplemente «indefinidas»; es bastante singular que Carnot haya reunido las unas y las otras bajo el mismo nombre de «infinitesimales», lo que es contrario, no solo al uso, sino al sentido mismo que este término saca de su formación. Aunque conservamos la palabra «infinitesimal» después de haber definido su significación como lo hemos hecho, no podemos dispensarnos de hacer destacar que este término tiene el grave defecto de derivar visiblemente de la palabra «infinito», lo que le hace muy poco adecuado a la idea que expresa realmente; para poder emplearle así sin inconveniente, es menester en cierto modo olvidar su origen, o al menos no atribuirle más que un carácter únicamente «histórico», como proviniendo de hecho de la concepción que Leibnitz se hacía de sus «ficciones bien fundadas»). No hay heterogeneidad absoluta entre las cantidades indefinidas y las cantidades ordinarias, y no la hay tampoco entre éstas y las cantidades infinitesimales; en eso no hay en suma más que diferencias de grado, no diferencias de naturaleza, puesto que, en realidad, la consideración de lo indefinido, de cualquier orden que sea o a cualquier potencia que sea, no nos hace salir nunca de lo finito; es también la falsa concepción del infinito la que introduce en apariencia, entre estos diferentes órdenes de cantidades, una heterogeneidad radical que, en el fondo, es completamente comprehensible. Al suprimir esta heterogeneidad, se establece aquí una suerte de continuidad, pero muy diferente de la que consideraba Leibnitz entre las variables y sus límites, y mucho mejor fundada en la realidad, ya que la distinción de las cantidades variables y de las cantidades fijas implica al contrario esencialmente una verdadera diferencia de naturaleza. En estas condiciones, las cantidades ordinarias mismas, al menos cuando se trata de variables, pueden ser consideradas en cierto modo como infinitesimales en relación a cantidades indefinidamente crecientes, ya que, si una cantidad puede hacerse tan grande como se quiera en relación a otra, ésta deviene inversamente, por eso mismo, tan pequeña como se quiera en relación a la primera. Introducimos esta restricción de que debe tratarse aquí de variables, porque una cantidad infinitesimal debe siempre ser concebida como esencialmente variable, y porque eso es algo verdaderamente inherente a su naturaleza misma; por lo demás, cantidades que pertenecen a dos órdenes diferentes de indefinidad son forzosamente variables la una en relación a la otra, y esta propiedad de variabilidad relativa y recíproca es perfectamente simétrica, ya que, según lo que acabamos de decir, eso equivale a considerar una cantidad como creciendo indefinidamente en relación a otra, o a ésta como decreciendo indefinidamente en relación a la primera; sin esta variabilidad relativa, no habría ni crecimiento ni decrecimiento indefinido, sino más bien relaciones definidas y determinadas entre las dos cantidades. Es de la misma manera como, cuando hay un cambio de situación entre dos cuerpos A y B, al menos en tanto que no se considere en eso nada más que ese cambio en sí mismo, eso equivale a decir que el cuerpo A está en movimiento en relación al cuerpo B, o, inversamente, que el cuerpo B está en movimiento en relación al cuerpo A; la noción del movimiento relativo no es menos simétrica, a este respecto, que la de la variabilidad relativa que hemos considerado aquí. Es por eso por lo que, según Leibnitz, que mostraba con eso la insuficiencia del mecanicismo cartesiano como teoría física que pretende proporcionar una explicación de los fenómenos naturales, no se puede establecer ninguna distinción entre un estado de movimiento y un estado de reposo si uno se limita únicamente a la consideración de los cambios de situación; para eso es menester hacer intervenir algo de otro orden, a saber, la noción de la fuerza, que es la causa próxima de esos cambios, y la única que al ser atribuida a un cuerpo más bien que a otro, permite encontrar en ese cuerpo y solo en él la verdadera razón del cambio (Ver Leibnitz, Discours de Métaphysique, cap XVIII; cf El Reino de la Cantidad y los Signos de los Tiempos, cap XIV ).
