User Tools

Site Tools


guenon:rgpci:la_ley_de_continuidad

LA «LEY DE CONTINUIDAD»

Desde que existe el continuo, podemos decir con Leibnitz que hay continuidad en la naturaleza, o, si se quiere, que debe haber en ella una cierta «ley de continuidad» que se aplica a todo lo que presenta los caracteres del continuo; eso es en suma evidente, pero de ello no resulta en modo alguno que una tal ley deba ser aplicable a todo como él lo pretende, ya que, si hay continuo, hay también discontinuo, y eso, incluso en el dominio de la cantidad (Cf L Couturat, De l'infini mathématique, p 140: «En general, el principio de continuidad no tiene sitio en álgebra, y no puede ser invocado para justificar la generalización algebraica del número. La continuidad no solo no es en modo alguno necesaria para las especulaciones de la aritmética general, sino que repugna al espíritu de esta ciencia y a la naturaleza misma del número. El número, en efecto, es esencialmente discontinuo, así como casi todas sus propiedades aritméticas… Por consiguiente, no se puede imponer la continuidad a las funciones algebraicas, por complicadas que sean, puesto que el número entero, que proporciona todos sus elementos, es discontinuo, y “salta” en cierto modo de un valor a otro sin transición posible»): el número, en efecto, es esencialmente discontinuo, y es incluso esta cantidad discontinua, y no la cantidad continua, la que es realmente, como lo hemos dicho en otra parte, el modo primero y fundamental de la cantidad, o lo que se podría llamar propiamente la cantidad pura (Ver El Reino de la Cantidad y los Signos de los Tiempos, cap II ). Por otra parte, nada permite suponer a priori que, fuera de la cantidad, no pueda considerarse por todas partes una continuidad cualquiera, e incluso, a decir verdad, sería muy sorprendente que solo el número, entre todas las cosas posibles, tuviera la propiedad de ser esencialmente discontinuo; pero nuestra intención no es buscar aquí en qué límites es verdaderamente aplicable una «ley de continuidad», y qué restricciones convendría aportarle para todo lo que rebasa el dominio de la cantidad entendida en su sentido más general. En lo que concierne a los fenómenos naturales, nos limitaremos a dar un ejemplo muy simple de discontinuidad: si es menester una cierta fuerza para romper una cuerda, y si se aplica a esa cuerda una fuerza cuya intensidad sea menor que esa, no se obtendrá una ruptura parcial, es decir, de una parte de los hilos que componen la cuerda, sino sólo una tensión, lo que es completamente diferente; si se aumenta la fuerza de una manera continua, la tensión crecerá primero también de una manera continua, pero llegará un momento en que se producirá la ruptura, y entonces, de una manera súbita y en cierto modo instantánea, se tendrá un efecto de una naturaleza completamente diferente del precedente, lo que implica manifiestamente una discontinuidad; y así no es verdadero decir, en términos enteramente generales y sin restricciones de ningún tipo, que «natura non facit saltus». Sea como sea, basta en todo caso que las magnitudes geométricas sean continuas, como lo son en efecto, para que siempre se puedan tomar de ellas elementos tan pequeños como se quiera, y, por consiguiente, que pueden devenir más pequeños que toda magnitud asignable; y como lo dice Leibnitz, «es sin duda en eso en lo que consiste la demostración rigurosa del cálculo infinitesimal», que se aplica precisamente a estas magnitudes geométricas. Así pues, la «ley de continuidad» puede ser el «fundamentun in re» de esas ficciones que son las cantidades infinitesimales, así como también de esas otras ficciones que son las raíces imaginarias, puesto que Leibnitz hace una aproximación entre las unas y las otras bajo esta relación, sin que por eso sea menester ver ahí, como quizás lo hubiera querido él, «la piedra de toque de toda verdad» (L Couturat, De l'infini mathématique, p 266). Por otra parte, si se admite una «ley de continuidad», aunque se hagan algunas restricciones sobre su alcance, e incluso si se reconoce que esta ley puede servir para justificar las bases del cálculo infinitesimal, «modo sano sensu intelligantur», de ahí no se sigue en modo alguno que se deba concebir exactamente como lo hacía Leibnitz, ni aceptar todas las consecuencias que él mismo pretendía sacar de ella; es esta concepción y sus consecuencias lo que nos es menester examinar ahora un poco más de cerca. Bajo su forma más general, esta ley equivale en suma a esto, que Leibnitz enuncia en varias ocasiones en términos diferentes, pero cuyo sentido es siempre el mismo en el fondo: desde que hay un cierto orden en los principios, entendidos aquí en un sentido relativo como los datos que se toman como punto de partida, debe haber siempre un orden correspondiente en las consecuencias que se saquen de ellos. Como ya lo hemos indicado, es entonces un caso particular de la «ley de justicia», es decir, de orden, que postula la «universal inteligibilidad»; así pues, en el fondo, para Leibnitz, es una consecuencia o una aplicación del «principio de razón suficiente», si no este principio mismo en tanto que se aplica más especialmente a las combinaciones y a las variaciones de la cantidad: «La continuidad es una cosa ideal», dice, lo que, por lo demás, está lejos de ser tan claro como se podría desear, pero «lo real no deja de gobernarse por lo ideal y lo abstracto, …porque todo se gobierna por razón (Carta ya citada a Varignon, 2 de febrero de 1702)». Hay ciertamente un cierto orden en las cosas, y no es eso lo que está en cuestión aquí, pero se puede concebir este orden muy diferentemente a como lo hacía Leibnitz, cuyas ideas a este respecto estaban influenciadas siempre más o menos directamente por su pretendido «principio de lo mejor», que pierde toda significación desde que se ha comprendido la identidad metafísica de lo posible y de lo real (Ver Los Estados múltiples del ser, cap II ); además, aunque fue un adversario declarado del estrecho racionalismo cartesiano, en cuanto a su concepción de la «universal inteligibilidad», se le podría reprochar haber confundido demasiado fácilmente «inteligible» y «racional»; pero no insistiremos más sobre estas consideraciones de orden general, ya que nos llevarían muy lejos de nuestro tema. A este propósito, sólo agregaremos que es permisible sorprenderse de que, después de haber afirmado que «no hay necesidad de hacer depender el análisis matemático de las controversias metafísicas», lo que, por lo demás, es completamente contestable, puesto que eso equivale a hacer de la metafísica, según el punto de vista puramente profano, una ciencia enteramente ignorante de sus propios principios, y puesto que, por lo demás, solo la incomprehensión puede hacer nacer controversias en el dominio metafísico, Leibnitz llegue finalmente a invocar, en apoyo de su «ley de causalidad», a la que vincula este mismo análisis matemático, un argumento que, en efecto, no es metafísico, sino teológico, y que podría prestarse aún a muchas otras controversias: «Es porque todo se gobierna por razón, dice, y porque de otro modo no habría ciencia ni regla, lo que no sería conforme a la naturaleza del soberano principio» (Misma carta a Varignon. — La primera exposición de la «ley de continuidad» había aparecido en las Nouvelles de la République des Lettres, en julio de 1687, bajo este título bastante significativo desde el mismo punto de vista: Principium quoddam generale non in Mathematicis tantum sed et Physicis utile, cujus ope ex consideratione Sapientiae Divinae examinantur Naturae Leges, qua occasione nata cum R P Mallebranchio controversia explicatur, et quidam Cartesianorum errores notantur), a lo cual se podría responder que la razón no es en realidad más que una facultad puramente humana y de orden individual, y que, sin que sea menester siquiera remontar hasta el «soberano principio», la inteligencia, entendida en el sentido universal, es decir, el intelecto puro y transcendente, es algo completamente diferente de la razón y no podría serle asimilado de ninguna manera, de tal suerte que, si es cierto que no hay en él nada de «irracional», tampoco es menos cierto que, no obstante, hay en él muchas cosas que son «suprarracionales», pero que por eso no son menos «inteligibles». Pasaremos ahora a otro enunciado más preciso de la «ley de continuidad», enunciado que se refiere más directamente que el precedente a los principios del cálculo infinitesimal: «Si un caso se aproxima de una manera continua a otro caso en los datos y se desvanece finalmente en él, es menester necesariamente que los resultados de estos casos se aproximen igualmente de una manera continua en las soluciones buscadas y que finalmente se terminen recíprocamente el uno en el otro» (Specimen Dynamicum pro admirandis Naturae Legibus circa corporum vires et mutuas actiones detegendis et ad suas causas revocandis, Parte II ). Hay aquí dos cosas que importa distinguir: primero, si la diferencia de dos casos disminuye hasta devenir menor que toda magnitud asignable «in datis», debe ser lo mismo «in quaesitis»; en suma, en esto no se trata más que la aplicación del enunciado más general, y no es esta parte de la ley la que es susceptible de suscitar objeciones, desde que se admite que existen variaciones continuas y que es precisamente al dominio donde se efectúan tales variaciones, es decir, al dominio de la geometría, al que se refiere propiamente el cálculo infinitesimal; ¿pero es menester admitir además que «casus in casum tandem evanescat», y que, por consiguiente, «eventus casuum tandem in se invicem desinant»? En otros términos, ¿la diferencia de los dos casos devendrá alguna vez rigurosamente nula, a consecuencia de su decrecimiento continuo e indefinido, o bien, si se prefiere, aunque sea indefinido, llegará a alcanzar alguna vez su término este decrecimiento? En el fondo, se trata de saber si, en una variación continua, puede ser alcanzado el límite; y sobre este punto, haremos observar primero esto: como lo indefinido, tal como está implicado en el continuo, conlleva siempre en un cierto sentido algo de «inagotable», y como Leibnitz no admite que la división del continuo pueda desembocar en un término final, y ni siquiera que este término exista verdaderamente, ¿es perfectamente lógico y coherente por su parte admitir al mismo tiempo que una variación continua, que se efectúa «per infinitos gradus intermedios» (Carta a Schulenburg, 29 de marzo de 1698), pueda alcanzar su límite? Esto no quiere decir, ciertamente, que el límite no pueda ser alcanzado de ninguna manera, lo que reduciría el cálculo infinitesimal a no poder ser nada más que un simple método de aproximación; pero, si el límite se alcanza efectivamente, no debe ser en la variación continua en sí misma, ni como último término de la serie indefinida de los «gradus mutationis». No obstante, es por la «ley de continuidad» como Leibnitz pretende justificar el «paso al límite», que no es la menor de las dificultades a las que su método da lugar desde el punto de vista lógico, y es precisamente por eso por lo que sus conclusiones devienen completamente inaceptables; pero, para que este lado de la cuestión pueda comprenderse enteramente, nos es menester comenzar por precisar la noción matemática del límite mismo.

guenon/rgpci/la_ley_de_continuidad.txt · Last modified: by 127.0.0.1